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The effective current is given by 

and, finally, 

Motor D a h  
Power : 
Rated voltage: 
Rated current,: 
Rated speed: 
Rotor resist.ance: 

APPENDIX I11 

NUMERICAL EXKVPLE 

10 kW. 

52.2 A. 
n,v = 2260 r/min. 
R = 0.274 a. 

EAT = 220 V. 

On-Line  Learning Optimal Control Using Successive 
Approximation Techniques 

M. D. LEVINE AND T. VILIS 

Absfracf-The  application of learning theory  to on-line optimiza- 
tion of unknown or  poorly defined plants is discussed. An on-line 
optimization  procedure is achieved by means of a learning algorithm 
which alters a trainable controller on the basis of an instantaneous 
performance criterion or subgoal. The subgoal is related to the over- 
all goal, the integral cost, by means of successive approximations to 
the Hamilton-Jacobi  equation. The resulting piecewise linear con- 
troller is implemented by means of an encoder consisting of threshold 
logic units and a classifier consisting of a set of logic switching func- 
tions. The classser  is determined by means of an algorithm de- 
veloped by  Arkadev and Braverman. Features of the learning 
algorithm are illustrated by minimum-time and minimum-time-fuel 
problems. 

I. INTRODUCTION 
This  paper considers  t,he on-line regulator  problem for an unknown 

continuous plant whose outputs  (states)  are sampled at discretet.ime 
intervals  and which can be described by 

d m  + 1) = f(z(m),dm)) + 4 m  + 1)  (1) 
where u(m) is an dimensional  control vector, z(m) is an +dimen- 
sional state vector, and z ( m )  is an n-dimensional vector  representing 
a st.ationary Gaussian process. A computer (Fig. 1) is  used to syn- 
t,hesize a state feedback cont,roller u(m) = u(z(m))  which will return 
the  plant t.o some  desired terminal manifold, denoted by t.he set of 
states M ,  from  any  disturbed  stat.e z(m) g M while minimizing  a 
performance  criterion 

V ( r ( m ) )  = L(z(i),u(i)). T . (2 1 

where L(z,u) is the  instantaneous cost and ( p  - m)T is the  time  to 
reach X .  The minimal V(z (m) )  is denoted by V * ( z ( m ) )  and  the cor- 
responding  controller is denoted by u*(z(m)). 

A method of successive approximat.ions which computes  a con- 
verging  sequence of controllers u$(z),u1(z),* - * , u ~ ( z ) , -  . .,u*(z), 
each of which provides  st.able  control  over the  entire X space, has 
been developed  for k n o m  continuous plants 161, 171. This method 
also converges for known discrete  plants,  as shown  in Vilis [8]. 

To find a cont.roller uk(z), given a  st.able  controller ~.,LI(z),  we 
employ the following steps. 

Step 1: Evaluate  the general  performance crit,erion which corre- 
sponds to  t.he controller u ~ ( z ( m ) ) ,  

P-  1 

i = m  

i = m  

Step 2: Synthesize a new cont.roller uk(z(m)) by minimizing 
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On repeating  the sequence we find that V & ( m ) )  2 Vk+l(z(m)) 
and  that  the series converges t.0 V*(z (m) )  as k -+ m .l 

We intend in this  paper t.o show how the above st.eps can be im- 
plement.ed on-line for an unknown  plant. subject  to noise. The learn- 
ing  control algorit.hm proposed consists of two training phases which 
correspond to  the two steps  above: 1) an  overall goal training phase 
in which the general  performance.Vn(z) is evaluated (Fig. l), and? 
2 )  a  controller training phase  in which the subgoal  H(z(?n + l),  
z(m),u(m),Vk) is used t.o synthesize ub(x) (Fig. 2 ) .  

As pointed out  by  Jones [3] and  Lambert  and Levine [4],  it is 
important.  t,hat  the overall goal and subgoal be related so that. opti- 
mization of the subgoal  leads to  eventual optimization of the overall 
goal. Such a  relationship between Hand Vis  proven in [ 6 ] - [ 8 ] .  

The controller training phase is shown schematically in Fig. 2.  
Initially  the controller can be considered a stochastic  automaton 
being modified according to t,he subgoal H [shown in Fig. 2(a),  (b)]. 
Fu and  McllIurtry [ 2 ]  have  demonstrated  the effectiveness of this 
method in a noisy environment.. Following t.his, the controller is con- 
solidat.ed into a minimized switching  function shown in Fig. 2(c). 
This cont.roller is then used  in the goal t.raining phase (Fig. 1) .  

11. METHODS OF FUNCTIOK STORAGE 
The learning  algorithm must optimize bot,h the subgoal H and 

the goal V on-line. This involves storing  and  updating values of the 
goal, cont,roller, and subgoal as functions of their respective variables. 

minuc(r [L(z(m),u(m))'T + 17t(z(m i l))]. the equation used in Bellman's 
1 S o t e  that, in ( 4 ) , V - k ( r ( m ) )  isindependent  ofu(m) and  thus can bere aritrenas 

dynamic  prcgramming.  The difference here is  that k refers to iterations in  the 
strategy  spece.and  is  unrelated  to  m, xrhich specifies  temporal progression along 
any  plant  tralectory.  Thus  one  cannot  simply  equate  this  minimum to I ~ + L  
( z ( m ) ) .  but Instead must  repeat  Step 1. 

by starting  in  phase 2) with  some  arbitrary  stahle  subgoal  such  as H = ~ z ( m  + 2 If no stahle up-1 is  available  to  evaluate Vk. one  can  train  such  a  controller 

1) l .  

The goal function is stored  as V(h(m) )  where hi(m) corresponds to 
the  quantized  value of the  ith component of the  vector z(m) such 
that hi(m) can take on the values . . . - 2 A , -  A , O , A , ~ A .  . .. 

Since t.he cont.roller u(z)  may be a  multidimensional function of a 
multidimensional  vector, its  storage requires  a  different  approach. 
Suppose  a  number of planes are  drawn where the  intercepts  are uni- 
formally random in some region of X space. For a point z on  one  side 
of the  plane g&) > 0, while for z on t.he opposite side g&) < 0. 
Let t.his relationship be encoded by a binary  variable Z; where Zi can 
take on the set. of values B = [0, 11. Then, if gi(z) 2 0, let Zi = 1 
and, if gi(z) < 0, let Z; = 0. 

In general, fork planes, t.he Cartesian  product B' = B X B x . . .B  
is formed. Since B = [0,  11, each combinat.ion of k variables defines a 
vertex on a k-dimensional real  unit  cube which can be expressed 
functionally by a standard  productf(Z). In  Fig. 3, for example, region 
i in -Y space is represented by the  st.andard  product f(Zl,Z2,Z3) = 
rlnl,n 13. Encoding the -Y space in t,his manner allows the  direct 
synt,hesis of a piecewise linear  feedback  controller  in such a  way t.hat 
it can be stored in a digital  computer as  a  series of binary terms, or 
easily  implemented by logic hardware. 

The function -u(Z(m)) is restricted t.o a finite  set, of quant.ized 
values.  These consist of t.he set 13- = [U*,U.),. .,u!] where s is the 
number of different control choices and each  element a i  is an r- 
dimensional vect.or in t.he control  space. 

Finally, the subgoal funct,ion H is stored in terms of the quant.ized 
elements ui, i = 1,. . .,s, and Zj, j = 1 , .  . .,d. Thus, one  value of the 
subgoal will be stored for each element. of t.he Cartesian  product 
ui X Zi, i = I;..,s, j = l , . - . , d .  

111. CONTROLLER TRAIXING PHASE 
In  Fig. 3 each  vertex of the  hypercube  must be assigned to some 

element ui of the control set  to define the function u(Z(m)). This  is 
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Fig. 3. Quantization of the control function u(z). 

accomplished by  the on-line reinforcement training of a stochastic 
aut.omaton,  a  method used successfully for  controller tmining [5], 
[TI, [9].  State encoding as described here provides  a  simpler  method 
of transition  from  stochastic control to  deterministic control. 

First, let. us summarize the method of t.raining the stochast,ic 
automaton [ T I .  The  lat.ter [Fig.  2 (b)] is restricted  to  outputs qi such 
that qi i  = 1 or 0 and qf i  = 1. With  this rest.riction we can de- 
code q' into  the proper  member of U by simply  multiplying the former 
by a gain matrix K. The gain matrix consists of s columns with each 
column composed of t.he vect.or ui = [uli,-. .,uri]*, i = I,. . .,s. Let 
t.he probability of qi for input, Zv beIIp, a component of the s-dimen- 
sional probabi1it.y vector II.. The relationship between probabilit,y 
vectors of t,wo successive time  instances is given by  the  transition 
equation 

P ( m  + 1) oLzTv(m) + (1 - or)X'(m), 0 < or < 1 (6) 

where 01 controls the  rate of convergence and h"(m) is the reinforce- 
ment  vector  with components hi = 1 or 0 and hi = 1. These 
are chosen on t.he basis of the subgoal Hs(ui)  = H[s(m + l),z(m), 
ui(Zu(m)),V(h(m))], which in  turn is evaluated from repeated trajec- 
tories in t.he same way as the subgoals of [ti] and [ 9 ] .  If, for a part.icu- 
lar encoded state Zv, the  stored H*(u.~)  is such  that. 

Hz(u') = ,pin [ H " ( u f ) ] ,  (7) 
3 = l , s  

t,hen t.he reinforcement vector ha has  components hi = I and hi = 0, 
j # i a n d j  = l , . . . , s  . 

Training is terminated when the stochast,ic automaton  has reached 
a cert.ain prescribed level of confidence. A deterministic relat.ionship 
betaeen pi and P is then defined by a set of logic funct.ions Fi ,  
j = 1 , .  . 's, where 

qj i  = Fj(Z) = U fjk(Z) 
d j  

k=l  
(8)  

such  that, if, for the  vertex Zu, represented by  the  standard  product 
f ( Z ) ,  IIj' = maxi= 1,. . . ,s [Hiz], t,hen f ( Z )  is included  in the union of 
standard  products defined as F j ( 1 ) .  This  particular f ( Z )  is not in- 
cluded in any  other union, thus assuring t.hat,, for vertex Zs,  F,(Za) 
= 0 for m # j and m = 1,. . .,s, and  that  the gain matrix K is st.ill 
compatible. The controller is represented by the  three elements shoan 
in Fig. 2(c).  The next step is consolidat,ion of the encoder. 

Iv. CONTROLLER CONSOLIDATION 

Consolidat.ion is necessary for t a o  reasons: 1) the method of Sec- 
tion I11 does not assure t,hat qi will be defined for every Zu, and  2) 
( 8 )  is not a minimal form, which implies unnecessary  quant,ization 
of the X space. These inadequacies can be corrected by  the dissecting 
planes algorithm first proposed by Arkadev and Braveman [I], 
whose steps  are formalized here  in terms of minimizing switching 

functions. The objective is t.0 find a minimal representation of (8), 
while maintaining  the  mutual exclusive property of the elements of 
pi. This is achieved by first assigning DON'T CARE conditions to all 
vertices  for which no control is defined and  then performing the fol- 
lowing st.eps. 

Step I: To check whet,her a redundant  plane g; can be eliminated, 
let Z; = 1 and  test whether 

J 

If so, then  the Zit.h variable is removed (new k - k - 1); if not, Zi  is 
reinstated. All planes (i = 1,k) are  tested consecutively in this way. 

,Step 2: Step 1 can result in redundant  representation ol vertices. 
To eliminate these  from F,, test each of t.he terms consecutively as 
follows. If 

fvi.faj = f.i, for any i = l,d, a n d j  = i + I,&, (10) 

t.hen fej is redundant.  and can be e l i h a t e d  (new d, + d, - I). Each 
F ,  function is tested in this way. 

Step 3: To remove the  redundant. segments of plane gi in the  output 
function F,, let Z i  = 1 in the vertezf,, .  If 

then  the  term fvn becomes the reduced t.erm fun(li = 1); otherwise, 
t.he former is resinstated. All the vertices are t.ested  for the dimension 
Z i  in this way. After  this, the process is repeated for the  next dimen- 
sion, and so on, until all k dimensions have been tested. 

Step 4: -4s in Step 1, the merging of small regions into larger ones 
has produced redundant vertices, and  thus  Step 2 must be repeated. 

The  result of removing redundant planes and  redundant.  segments 
of planes is that all unassigned regions I" are assigned controls. 
Also, the  algorkhm  unites  into one region any  two  adjacent regions 
assigned the  same control. This gives a set of switching  functions in a 
minimal  sum-of-product form which, together witit.h t.he encoder and 
decoder, constitutes t,he  consolidated  controller. 

V. GOAL TRAINING 

Using the controller obtained above, the algorithm returns t o  
retrain t,he goal function T'. The  stable cont.roller generates t.rajec- 
tories  from random  disturbed  states t.0 M. During each trajectory a 
series of instantaneous costs L[z(m),  u ( Z ( m ) ) ] .  T are  stored in the 
computer  together wit.h their associated states z(m).  Once M is 
reached,  these  costs are  summed backwards to  evaluate  the  summed 
costs V ( z ( m ) )  for each  point along the  trajectory.  The  stored values 
of state  are t.hen quantized,  and V ( z ( m ) )  is st,ored  in its respective 
quant.ized region as V ( h ( m ) ) .  Several trajectories  are calculated  in 
this way. If parts of these trajectories overlap,  values of V ( h )  ate 
averaged with those having a  corresponding h. If at.  the  end of a given 
number of trajectories some regions are undefined, t.he computer 
generates values of V ( h )  for t.hese regions based on adjacent regions. 
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Fig. 4. Solution to minimum-time  problem. 

VI. EXAMPLES 
or continous pla 
Ideal Decision Surface 

The behavior of t.he learning algorit.hm was studied  by simulation. 
For t,his purpose the  particular unknown plant was chosen to  be t.he 
following: 

zl(m + 1 )  

ermincll  Manifdld 

where T = 0.1 s and z represents  a  Gaussian process of zero mean and 
a standard deviation of 0.05. The  terminal manifold was defined as 

< 1.0 and  the  disturbance was given a uniform probability 
density of /z;l < 10. Two  overall goals were tested. 

Goal 1: The overall goal for the minimum-time  problem was to 
minimize 

P- 1 
V(r(rn)) = T = ( p  - m)T (13) 

i = m  

where the control is limit.ed t.o ( u I  < 10. The minimum  principle 
then enables one  to choose the  initial cont.rol set. as G = [ + 10, - 101. 
The  function V was stored as a 41 X 41 grid in 6he interval -20 5 

dom  planes. A stable cont.roller u4(z) was t.rained using an  initialsub- tionship of e,ements in x' space in the  quantized space. Singlebit 

completed  in less t.han 200 trajectories. The resulting  switching  sur- adjacent regon. a0, since t,he control code q; is linea,rly indepen- 
faces after  the  sixth  iteration  are shown in Fig. 4. dent, single-bit errors can easily be detected.  Thus  the codes Z and q 

Goal 2: The overall goal for  the minimum-time-fuel problem was may be t,ransmitted  along a channel enabling remote on-line 
control. 

Fig. 5. Solution t o  minimum-time-fuel  problem. 

I 20 with A = 1.O.FOru(z), the  XsPace was quantized by ten ran- regions of X space into adjacent.  vertices, maintains  the  spatial rela- 

goal = !z(ln i ')I - Iz(nz)/. Each  training Phase errom in t,he I code would only  change the  representation  to Some 

v ( z ( ~ n ) )  = ( I  + /ui)T. 
P-1 

i = m  
(14) 

VII. CONCLUSIONS 

Except.  for  changing U = [+lo, 0, -101, function storage as This  paper  has  studied  the use of t.he method of successive ap- 
above. The algorithm was initialized by using % ( x )  from the above proximations  in generating a  subgoal suitable for on-line learning 
example as the  initial controller. The resulting decision surfaces control.  Although  simulations were limited t.o linear plants,  the sub- 
after  the  third  iteration  are shown in Fig. 5,  and  the controller mhich goal is theoretically  applicable to nonlinear  unknown plants.  The 
would produce them is shown in Fig. 6. An interesting  property of usefulness of dissecting  planes as a state encoder was also demon- 
this cont.roller should be noted.  The encoder, by mapping adjacent strated. 
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Stability Criterion for  N-Dimensional  Digital Filters 
J. H.  JUSTICE -am J. L. SHANKS 

Abstract-The stability requirement for  one-dimensional  re- 
cursive  filters is well known. A stability theorem  for n-dimensional 
recursive  filters is proved wherein  the denominator of the filter is  an 
n-dimensional power series. A Tauberian  theorem  due  to  Wiener 
yields the  desired  result in the general  case. 

I.  INTRODUCTIOX 
Linear  digital  filtering is a useful tool for processing discrete se- 

quences of data [1],[2]. It is used in  a variety of applications, in- 
cluding procssing of seismic data,  radar signals, cardiographic re- 
cordings, and many ot.her “signals” which have been sampled and 
stored in digital  form. 

One of the more efficient. types of digital  filters is the  “recursive 
a t e r ”  [3],[4]. For one-dimensional sequences, the recursive filter 
can be described by  its z-transform 

where the a and b coefficients define the filter. In  applying this  flt.er 
to a d a h  sequence, we use the recursive  algorithm 

where t.he zk, k = 0,1,2,. . ., represent the  input,  data sequence and 
the y t ,  k = 0,1,2,. . ., represent the  output. sequence. In using t.his 
algorithm, we assume that  the z p  and yk are zero for all k < 0. 

This  type of filter is used extensively in processing onedimensional 
sampled data.   I t  is also possible to extend this technique to n-dimen- 
sional data [5], [6], [lo]. Such filters are useful in processing two- 
dimensional data, such  as seismic data sections, digitized photo- 
graphic data,  and  gravity  and magnetic maps. In  the case of a two- 
dimensional recursive filter, the filter can be described using  two- 
dimensional polynomials or power series in (zl,zq), such  as 

F(z1,zs) = -4 (Zl ,Z?)I / ’B(L1,8*)  (3 ) 

where 
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and 

A filt.ering algorit.hm similar t.0 (2) can be writ.ten for t.he  two- 
dimensional and higher dimensional filters. 

One of the problems  in  using  recursive  filters is stability. We re- 
quire  t,hat t.he out.put of the filter not become unbounded if 
the input. is bounded. The stabi1it.y depends on the coefficients of t,he 
denominator of the recursive filters. In  the case of the one-dimen- 
sional  recursive filter, it,  has been shown in many places that  the filter 
 ill be stable if the  roots of the  denominator polynomial B ( z )  are all 
outside  the z-plane unit circle [TI .  However, these proofs all  depend 
on our ability to  factor t,he polynomial B ( z )  into  its distinct. roots. 
In  the case of n-dimensional polynomials or power series, no such 
factorization exists. Huang [l l]  has shown a proof for  the two- 
dimensional case in which the B(t1,zp) is a  finite polynomial. There- 
fore, it is the purpose of this  paper  to  state  and prove the condit.ions 
on the denominator  polynomial or power series of an n-dimensional 
recursive filtlt.er which will allow that, filter to  be stable. 

11. DEVELOPMENT 
Let us begin by developing the rationale for the precise definition 

of stability which we shall use. I t  is well known that multiplication of 
two poner series may be performed by convolving their sequences of 
coefficients; this is the process inherent in recursive digital filtering. 
We shall not. distinguish between a power series and  its sequence of 
coefficients but shall refer t.o a power series as a  sequence, or vice 
versa, when convenient. The  term  stability of a filter is  generally 
used t.o indicate  that  the result of convolving the filter with some 
bounded input sequence  should  have,  in  some sense, a  bounded out- 
put. Since all of this is rather vague, let us be more precise. One of the 
simplest classes of power series which n e  might choose to work Kith 
ia t.he class of power series in z and lit  which has  absolutely summable 
coefficients. That, is, those  series of t,he form 

5 a& 
n =  - m  

where 

This class offers the  advantage  that a product (convolution) of 
t.xo members of the class is  again of this class. As a result, if a filter 
and  an  input sequence are chosen from this class, the  out,put sequence 
must. also be of this class, and so t.he filter is necessarily of the t,ype 
we choose to t.hink of as stable. Since t.he recursive  filter is in general 
a quotient of two power series, we shall require  t.hat the t.wo series be 
of this class and seek t.he conditions which will guarantee  that t.he 
resulting quotient will again be represented by a power series in this 
class. Our  procedure will be to use  a Tauberian  theorem proved by 
Wiener [9, p. 371 to derive the necessary criterion. Because this  result 
does not rely on dimension, but only on the algebraic and topological 
structure of the class of absolutely  summable sequences, we are 
able  to derive t.he stability criterion  for the large class of 3-dimen- 
sional  recursive filters. Our ultimate aim is to give the necessary and 
sufficient condition that, given an A--dimensional absolutely sum- 
mable power series in the denominator of the filter, the filter d l  be 
st.able  no matter  what ,V-dimensional absolutely summable numer- 
ator  may be chosen for t,he recursive  filter. 

To simplify our work in :V-dimensions, let us use the following 
notation. 

Sotation: We shall represent. the integers by 2, the  set of non- 
negative  integers by PI and  the  set of nonposit.ive integers by it’. 

The sequences (coefficients of power series) which we use must  be 
indexed. We shall consider index sets which belong to  the  set 2“ X 
Po X X 7  where 01, B, y are nonnegative int.egers. -4 zero exponent  on 


